Georg-August-Universität Göttingen	6 C 4 WLH
Module M.Inf.1808: Practical Course on Parallel Computing	
Learning outcome, core skills:	Workload:
Successfully completing the module, students are able to:	Attendance time:
 practically work with a cluster of computers (e.g., using a batch system) 	56 h
 practically utilize grid computing infrastructures and manage their jobs (e.g., Globus toolkit) 	Self-study time: 124 h
 apply distributed memory architectures for parallelism through practical problem solving (MPI programming) 	
• utilize shared memory architectures for parallelism (e.g., OpenMP and pthreads)	
 utilize heterogenous parallelism (e.g., OpenCL, CUDA and general GPU programming concepts) 	
 utilize their previous knowledge in data structures and algorithms to solve 	
problems using their devised (or enhanced) parallel algorithms	
Course: M.Inf.1808.Lab Practical Course on Parallel Computing (Practical course)	4 WLH
Contents:	
As a practical course, the focus will be on the hands-on session and problem solving.	
Students will get a brief introduction to the topic and then will use the laboratory	
equipment to solve assignments of each section of the course.	
Examination: Oral examination (approx. 20 minutes), not graded	6 C
M.Inf.1808.Mp: Practical Course on Parallel Computing	
Examination requirements:	
 understand how to manage computing jobs using a cluster of computers or using grid computing facilities 	
 understand the configuration of a PBS cluster through practical assignments practically use LRM clusters and POVRay examples 	
 understand cluster computing related topics (error handling, performance 	
management, security) in more depth and using hands-on experience and practically using Globus toolkit	
 design and implement solutions for parallel programs using distributed memory 	
architectures (using MPI)	
design and implement solutions for parallel programs using shared memory	
parallelism (using OpenMP, pthreads)	
 practically work with MapReduce programming framework and problem solving using MapReduce 	
 practically work with heterogenous parallelism environment (GPGPU, OpenCL, CUDA, etc.) 	
Admission requirements:	dae.

Recommended previous knowledge: Admission requirements:

- Data structures and algorithms • Programming in C(/C++)
- Parallel Computing
- Computer architecture
 - Basic knowledge of computer networks

	Basic know-how of computing clusters
Language: English	Person responsible for module: Prof. Dr. Ramin Yahyapour
Course frequency: unregelmäßig	Duration: 1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 20	