Georg-August-Universität Göttingen		3 C
Module B.Phy.5668: Introduction to Computer Vision and Robotics		
 Learning outcome, core skills: After successful completion of this module, will be familiar with the basics concepts of artificial intelligence (AI) and robotics, the basics concepts of machine learning (ML), the basic concepts of computer vision (CV), and low level hardware components and their functions. 		Workload: Attendance time: 28 h Self-study time: 62 h
 Course: Introduction to Computer Vision and Robotics (Lecture) Contents: PID Controller, Kalman Filter and Extended Kalman Filter, SVM, Centroid, Perceptron, Neural Networks und Deep Neural Networks, K-Means, A*, Q-Learning, Particle Filter, SLAM, Smoothing and Median Filtering, Bilateral Filtering, Non-Local Means, Connected Components, Morphological Operators, Line Detection, Circle Detection, Feature Detection, Advanced image segmentation algorithms, and Evaluation of machine learning methods 		
 Examination: Written examination (90 minutes) Examination requirements: The students must be able to repeat the contents of the lecture, to design a robot control algorithms, and to identify and understand low level hardware components as robot sensors and actuators. 		3 C
Admission requirements:	Recommended previous knowledge: none	
Language: English	Person responsible for module: Prof. Dr. Florentin Andreas Wörgötter	
Course frequency: each winter semester	Duration: 1 semester[s]	
Number of repeat examinations permitted: three times	Recommended semester: Bachelor: 5 - 6; Master: 1 - 2	
Maximum number of students: 40		