Georg-August-Universität Göttingen		5 C
Module M.Inf.1114: Algorithms on Sequen	ces	
Learning outcome, core skills: We expect that the participants will gain an understant tools. They are supposed to understand and be able to classical text algorithms (e.g., pattern matching algorit indexing data structures (e.g., suffix arrays / trees), and that are useful in this context (e.g., periodicity lemmas	ding of classical string-processing o use in various situations: hms, edit distance), classical text d classical combinatorial results).	Workload: Attendance time: 56 h Self-study time: 94 h
Course: M.Inf.1114.Lec Algorithms on Sequences (<i>Contents</i> : This course is an introduction into the theory of stringe of symbols (also called words or strings). Our main int basic algorithmic and combinatorial results, which can word-processing tools. While the emphasis of the cou stringology, we also present a series of applications of like data-compression or computational biology	Lecture, Exercise) plogy, or algorithms on sequences ention is to present a series of be used to develop efficient rse is on the theoretical side of if the presented concepts in areas	4 WLH
The main topics our course will cover are: basic comb matching algorithms, data structures for text indexing compression (Huffman encoding, Lempel-Ziv method) words, algorithms for words with don't care symbols (p algorithms, longest common subsequence algorithms, The presentation of each theoretical topic from the ab discussion on its possible applications.	inatorics on words, pattern (suffix arrays, suffix trees), text , detection of regularities in partial words), word distance approximate pattern matching. ove will be accompanied by a brief	
Literature		
 T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to Algorithms (3rd Edition), MIT Press, 2009. M. Crochemore, C. Hancart, T. Lecroq: Algorithms on Strings, Cambridge University Press, 2007. M. Crochemore, W. Rytter: Jewels of Stringology, World Scientific, 2002. D. Gusfield. Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, 1997. 		
Examination: Oral examination (approx. 20 minutes) M.Inf.1114.Mp: Algorithms on Sequences Examination requirements: basic combinatorics on words, pattern matching algorithms, data structures for text indexing (suffix arrays, suffix trees), text compression (Huffman encoding, Lempel-Ziv method), detection of regularities in words, algorithms for words with don't care symbols (partial words), word distance algorithms, longest common subsequence algorithms, approximate pattern matching		5 C
Admission requirements:	Recommended previous knowle	dge:

Admission requirements:	Recommended previous knowledge:
none	none

Language:	Person responsible for module:
English	Prof. Dr. Florin Manea
Course frequency:	Duration:
irregular	1 semester[s]
Number of repeat examinations permitted: twice	Recommended semester:
Maximum number of students: 50	